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Fully nonlocal two-projector norm-conserving pseudopotentials are shown to be compatible with a systematic
approach to the optimization of convergence with the size of the plane-wave basis. A reformulation of the
optimization is developed, including the ability to apply it to positive-energy atomic scattering states and to
enforce greater continuity in the pseudopotential. The generalization of norm conservation to multiple projectors
is reviewed and recast for the present purposes. Comparisons among the results of all-electron and one- and
two-projector norm-conserving pseudopotential calculations of lattice constants and bulk moduli are made for a
group of solids chosen to represent a variety of types of bonding and a sampling of the periodic table.
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I. INTRODUCTION

While the subject of pseudopotential generation is generally
considered to be mature, recent concerns with inaccura-
cies of tabulated sets of potentials in the context of high-
throughput material searches1,2 indicate that room remains
for improvement. Since the introduction of norm-conserving
pseudopotentials,3,4 which in combination with density-
functional theory5 paved the way for ab initio calculations
of many properties of solids, two main thrusts have driven
their improvement. One of these is computational efficiency
and the other is accuracy. Both of these issues can be addressed
in other ways. The ultrasoft-pseudopotential method6 and
the related projector-augmented-wave method7 do so but at
the expense of creating more complex representations of the
quantities involved in electronic structure calculations than
the simple plane-wave representation of norm-conserving
pseudopotentials (NCPPs). While both are routinely used
for ground-state energy and structural-relaxation calculations,
the implementation of more advanced calculations such as
density-functional perturbation theory (DFPT)8 or many-body
perturbation theory9 becomes vastly more complex than that
required with NCPPs. Thus there remains ample motivation to
seek further improvements of NCPPs.

Of the two areas for improvement, computational efficiency
has received the greater share of attention. The original
NCPPs were semilocal, that is, each angular momentum
component � of a wave function about an atom was acted
upon by a different local radial potential. A large step
forward in computational efficiency was the transformation
of these NCPPs to a single local radial potential and a set of
separable nonlocal projectors, one for each of several angular
momenta.10 This “Kleinman-Bylander” (KB) approach greatly
reduced the computational cost of the Hamiltonian matrix
in the plane-wave representation and expedited efficient
wave-function evolution methods11 that dominate electronic
structure calculations today. The key properties of semilocal
NCPPs were preserved, namely the reproduction of all-
electron eigenvalues and integrated total charge inside the core
radii rc� and the related agreement of the first energy derivatives
of the logarithmic derivatives of the outwardly-integrated
radial Schrödinger equation at rc�. At energies further removed
from the eigenvalue, however, the logarithmic derivatives and

hence scattering properties of the all-electron, semilocal, and
KB potentials all differ.

The other aspect of computational efficiency which re-
ceived attention was the rate at which electronic structure
results for solids converged with respect to the size of the plane-
wave basis. The general prescription for generating NCPPs
consists of constructing a node-free pseudo-wave-function that
matches the all-electron wave function to some desired degree
of continuity at rc� and inverting the radial Schrödinger equa-
tion. Several studies analyzed the convergence of the Fourier
transform of the semilocal potentials and proposed particular
functional forms for the pseudo-wave-functions that were
found to optimize this convergence.12,13 These approaches
gave “one size fits all” prescriptions. A more flexible approach
was introduced by Rappe, Rabe, Kaxiras, and Joannopoulos
(RRKJ), who expanded each pseudo-wave-function as a linear
combination of basis functions and minimized the error of
the Fourier-space calculation of its kinetic energy caused by
the truncation of this calculation at a cutoff wave vector qc

while satisfying the usual NCPP conditions.14 A portion of this
study was motivated by the author’s desire to overcome some
limitations of the “optimized pseudopotentials” presented in
that paper, and a reformulation of the underlying formalism
which couples seamlessly to the accuracy issue to be discussed
next is presented in Sec. II.

The accuracy with which ab initio pseudopotentials can
predict physical properties of solids is fundamentally limited
by that of density-functional theory. The ensuing discussion
is confined to the ability of NCPPs to reproduce all-electron
results. A number of different issues influence accuracy. One is
the fact that the ground-state configuration of an atom, usually
the best reference in the author’s experience, could not be
used to generate NCPPs for all the desired angular momenta.
A best compromise solution was to use ionized configurations
and perhaps fractional occupation of some orbitals to obtain
all the required bound states.4 This limitation was overcome
when it was shown that positive-energy scattering states
could be used to construct NCPPs.15 Unfortunately, the RRKJ
optimization procedure14 cannot be applied to scattering states
because the kinetic energy truncation error cannot be defined.
Section II also addresses this problem, introducing a soft
“barrier” potential beyond rc� to create a decaying tail for
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the reference all-electron function. The scattering properties
of NCPPs created in this manner behave essentially identically
to those calculated from scattering pseudo-wave-functions
formed using other prescriptions.

A key accuracy issue is the energy range over which
an NCPP can reproduce the scattering properties of the
all-electron potential. It was observed early on that smaller
rc�s lead to improved agreement, but at the expense of poorer
plane-wave convergence.4 Extending the NCPP conditions to
require the matching of higher energy derivatives of the radial
logarithmic derivatives at rc� was shown to yield improved
agreement,16 but this has not been widely pursued. It is
widely recognized that the choice of local potential in the
KB construction changes the scattering properties, and can be
used to improve its performance. Forming the local potential
by adding step functions to one of the semilocal potentials
has been proposed a means for improving KB potentials.17

While the local-potential steps cancel exactly with the KB
projectors at the reference energies, the overall effects on
plane-wave convergence may be a cause for concern. In
general, there is no systematic prescription for improving the
overall scattering properties of a KB NCPP by local-potential
adjustment, although trial and error may yield improved results
in some cases.

A systematic means for improving the scattering properties
of fully nonlocal NCPPs was introduced by Blöchl, and
involved the introduction of additional separable projectors
rather than adjustments of the local potential.18 He demon-
strated that a second projector could increase the range of
energies over which the scattering properties of the semilocal
and fully nonlocal potentials agree. However, this is to be
distinguished from improving the agreement of the scattering
properties of the fully nonlocal potential and those of the
all-electron potential, which should be the desired goal.

The accuracy focus of the present work is based on
Ref. 6 in which Vanderbilt introduced the popular ultrasoft
pseudopotentials. It has been widely overlooked that in passing
towards the ultrasoft potentials, he gave a prescription for
a multiple-projector NCPP which could match scattering
properties and norm conservation to all-electron results at
several energies. His generalized norm-conserving condition
Qij = 0, where Qij is defined by Eq. (5) of Ref. 6, along
with the accompanying analysis is the key physical principal
which distinguishes this multiprojector method from that of
Blöchl.18 One proof-of-principal paper19 was published a
few years after Ref. 6, but was not pursued.20 In Sec. III
we review this formalism with revisions appropriate to an
NCPP end product, and show how it may be incorporated
into our formulation of residual kinetic energy convergence
optimization. Combining the terminologies of Refs. 14 and 19,
we denote these as “optimized norm-conserving Vanderbilt
pseudopotentials” (henceforth “OV”).

Section III also presents comparisons of the KB and OV
potentials for the scattering properties of a representative atom.
These improvements are found to be especially important
in cases where shallow core states are treated explicitly.
Convergence is compared for KB and OV, and the manner
in which the residual kinetic energy correlates with the total
energy convergence for solids14 is demonstrated. Section IV
compares OV and KB results to all-electron results for a

selection of solids with ionic, covalent, and metallic bonding
incorporating atoms from a variety of positions in the periodic
table.

II. KINETIC ENERGY TRUNCATION ERROR
OPTIMIZATION REVISITED

The actual implementation of the optimization principle of
RRKJ is very briefly sketched in the original publication.14 The
independent approach developed in this work organizes the
process in a transparent manner, and allows for easy extension
of optimization to a second Vanderbilt projector. Therefore we
will outline our formalism in some detail.

We begin by introducing a generalization of the residual
kinetic energy for angular momentum � and an operator
shorthand notation,

Er
�,ij (qc) =

∫ ∞

qc

ϕ�i(q)ϕ�j (q)q4dq ≡ 〈ϕ�i |Êr(qc)|ϕ�j 〉, (1)

where the Fourier transform

ϕ�i(q) = 4π

∫ ∞

0
j�(qr)ϕ�i(r)r2dr (2)

is that of a pseudo-wave-function or a component of a pseudo-
wave-function ϕ�i(r). With the exception of references to
spherical Bessel functions j�, the angular momentum subscript
� will be omitted below, and it will be assumed that we are
working with a single � throughout. A diagonal element i = j

of Eq. (1) is equivalent to the RRKJ definition.14

Our approach is organized as a hierarchy of radial basis
functions which will be denoted as ξi and distinguished by
various superscripts. The initial set is simply a set of N

spherical Bessel functions

ξB
i = j�(qir), r � rc; ξB

i = 0, r > rc, (3)

and the choice of wave vectors qi will be discussed below. The
next basis set is the orthonormalized version of ξB

i ,

ξO
i =

N∑
j=1

(S−1/2)ij ξ
B
j ; Sij = 〈

ξB
i

∣∣ξB
j

〉
. (4)

Next, we consider the constraints to be satisfied by the
pseudo-wave-function. In the original RRKJ paper, continuity
of value, slope, and second derivative were required at rc.14

This enforced continuity of value for the semilocal pseu-
dopotential obtained by inverting the Schrödinger equation,
but permitted slope discontinuities. These caused us some
concern, especially for applications like the calculation of
elastic constants via DFPT, where two derivatives of the
pseudopotential must be computed.21 Denoting the final
pseudo-wave-function simply as ϕ and the reference all-
electron wave function as ψ , we have

ϕ =
N∑

i=1

ziξ
O
i , r � rc; ϕ = ψ, r > rc, (5)

Generalizing the number of continuity constraints at rc from 3
to M, i.e.,

dnϕ

drn

∣∣∣∣
rc

= dnψ

drn

∣∣∣∣
rc

≡ dn+1, n = 0, M − 1, (6)
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sets the requirement that the coefficients zi satisfy the set of
M linear equations

N∑
j=1

Cij zj = di, i = 1,M; Cij = di−1ξO
j

dri−1

∣∣∣∣∣
rc

. (7)

Proceeding by the standard singular-value decomposition
of the M × N C matrix, C = U�VT , we are led to our next set
of basis functions. Columns M + 1, . . . ,N of V correspond to
zero singular values of C, spanning its null space and yielding
our set of null basis functions

ξN
i =

N∑
j=1

Vj,M+i ξO
j , i = 1,N − M. (8)

The unique set of coefficients

z0i =
M∑

j,k=1

Vij (�jj )−1UT
jkdk, i = 1,N (9)

defines a component of the desired final pseudo-wave-function
which satisfies all the matching conditions at rc,

ϕ0 =
N∑

i=1

z0iξ
O
i r � rc; ϕ0 = ψ, r > rc. (10)

The previous step influenced the choice of wave vectors qi

defining the ξB
i basis set. An attractive choice was to select

the first N q’s that match the logarithmic derivative of ψ

at rc. Since j� are solutions of the spherical wave equation
and this requirement imposes homogeneous Robin boundary
conditions on [0,rc], these are eigenfunctions that form an
orthogonal set. This choice led to only M-1 nonzero singular
values of C, indicating an unanticipated linear dependency. In
particular, we could not satisfy the 3rd derivative constraint.
It became clear that the spherical wave equation imposes
relationships among the derivatives of the j�. While several
alternative choices were satisfactory, all at the expense of the
orthonormalization step, the simple expedient of choosing
q2,q4, . . . ,qN to match logarithmic derivatives and setting
q1 = q2/2 and q3 = (q2 + q4)/2 proved very robust.

The members of the null basis set ξN
i are orthonormal,

orthogonal to ϕ0, and have zero value and M-1 derivatives at
rc. The residual energy to be minimized can now be expressed
as

Er = 〈ϕ0| Êr |ϕ0〉 + 2
N−M∑
i=1

〈
ξN
i

∣∣ Êr |ϕ0〉 yi

+
N−M∑
i,j=1

〈
ξN
i

∣∣ Êr
∣∣ξN

j

〉
yiyj (11)

subject to the norm-conservation constraint

N−M∑
i=1

y2
i = 〈

ψ
∣∣ψ 〉

rc
−

N∑
i=1

z2
0i ≡ Dnorm, (12)

where Dnorm is the “norm deficit” of ϕ0 with respect to the ψ

norm on [0,rc]. While Eqs. (11) and (12) constitute a quadratic
form to be minimized subject to quadratic constraints, a prob-
lem which can conventionally treated by Lagrange multipliers,
this did not turn out to be a robust procedure.

Instead, we proceed to our final (promise!) set of “residual”
basis functions ξR

i , which are formed from linear combinations
of the ξN

i based on the eigenvectors of the Er
ij matrix in

Eq. (11). The corresponding eigenvalues ei span a very large
dynamic range ∼106–108, which both yields informative
insights into the optimization process and suggests an ad hoc
minimization procedure which has proven to be very robust.
The final pseudo-wave-function is now

ϕ = ϕ0 +
N−M∑
i=1

xiξ
R
i , (13)

and the residual energy is

Er = Er
00 +

N−M∑
i=1

(
2fixi + eix

2
i

)
, (14)

where the “force” terms fi are computed from the Er
i0 in

Eq. (11) using the Er
ij eigenvectors. The norm constraint is

Eq. (12) with yi replaced by xi .
The ad hoc procedure consists of solving the constraint

equation for x1, where e1 is the smallest eigenvalue,

x1 = s

(
Dnorm −

N−M∑
i=2

xi

)1/2

, (15)

and where the sign s = ±1. The N − M − 1 dimensional
hypersphere within which the argument of the square root
is positive22 is then searched on a coarse x grid, and Er

is evaluated using Eq. (14), trying each choice for s. The
location of the minimum on this grid is found, along with the
corresponding value of s. The values of x2, . . . ,xM are then
refined iteratively by setting derivatives of Eq. (14) to zero,

xi = −fi/(ei + e1 − sf1/2x1), (16)

and recalculating x1 using Eq. (15). This iteration generally
converges quickly. As the large dynamic range of the ei

suggests, the law of diminishing returns sets in quite rapidly,
with minimal improvements beyond N = M + 3 or N =
M + 4. As a result of this and the simple form of Eq. (14), the
dimension of the hypersphere to be searched is small and the
energy evaluation trivial.

The optimization procedure outlined above is based on
a particular choice of the cutoff wave vector qc, implicit in
Eq. (11). After obtaining the xi coefficients, however, one can
transform back to the yi coefficients of the ξN

i basis set and
use Eq. (11) to evaluate the function Er (q) for a range of
qs. This provides a measure of truncation error per electron,
which we will see in Sec. III correlates quite well with the
actual convergence behavior of the total energy in plane-wave
calculations, as claimed in Ref. 14. The optimum choice of qc is
guided by experience, and is typically inversely proportional to
rc. For too small a qc, the (typically exponential) convergence
of Er (q) will flatten off for qs larger than qc, while for too
large a value, useful convergence is unnecessarily sacrificed.

The above formalism may be applied to effectively optimize
positive-energy scattering states if the infinite-range oscilla-
tory tail of these states is replaced by a smoothly decaying
tail beyond rc. An effective method of achieving this is to add
a smooth “barrier” potential to the all-electron potential so
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that a bound eigenfunction will exist at the desired energy. A
satisfactory form is

VAEB(r) = VAE(r) + v∞θ (x)x3/(1 + x3); x = (r − rc)/rb,

(17)

where θ is the unit step function and the coefficients v∞ and
rb determine the height and width of the barrier. Since the
value and two derivatives of the barrier function vanish at rc,
4 derivatives of the all-electron eigenfunction are continuous.
While this choice is ad hoc and the shape of the tail affects the
values of the terms in Eq. (11), the optimized pseudo-wave-
function is relatively insensitive to the barrier parameters. To
achieve a bound state with specified energy ε and reasonable
decay properties, it is effective to start with a large value for
rb, attempt to find a value of v∞ in the range [ε,ε + 1Ha] for
which a bound state at ε exists, and decrease rb in steps until
this condition can be met. The logarithmic derivative at rc is
determined by the energy alone and is identical to that which
would have been obtained with the original scattering-state
method.15 The barrier ψ should have one more node than the
highest-lying core state with the same �, or no nodes if there
are none. In the next section, when an additional ψ is required
at higher energy, another node should be added.

The barrier method might typically be employed to generate
the d pseudopotentials for atoms with no valence d electrons.
In Fig. 1, we illustrate the relations among the all-electron and
pseudo-wave-functions for barrier-bound and scattering Ge d

states, calculated at an energy of + 0.25 Ha.
The set of smooth Ge pseudopotentials shown in Fig. 2

is typical of the semilocal potentials produced by our
optimization algorithm. It was remarked in Ref. 13 that
pseudopotentials calculated with the RRKJ method14 display
“strong short-wavelength oscillations.” The authors of Ref. 13
give no details on the implementation of RRKJ which led
them to this observation. I can only assure readers that this
is not a characteristic of the present potentials. The semilocal
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FIG. 1. (Color online) All-electron (ψ) and pseudo- (ϕ) wave
functions for the Ge d scattering state at 0.25 Ha, illustrating the
use of a soft barrier to induce a bound-state-like tail, which allows
residual energy optimization.
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FIG. 2. (Color online) Ge pseudopotentials illustrating the
smooth behavior characteristic of the residual energy optimization
approach introduced here.

potentials generated in the course of producing the 1- and
2-projector nonlocal potentials used in all the tests reported in
Sec. IV show comparably smooth behavior.

While the Cu d pseudopotential presented to illustrate
RRKJ optimization in Fig. 2 of Ref. 14 displays a prominent
slope discontinuity at rc, the effects of increasing the continuity
of the optimized pseudopotentials at rc within the present
optimization algorithm are less obvious. Ca d semilocal
potentials, calculated for an unoccupied shallow bound 3d

state, are shown in Fig. 3 with value-only, first-derivative, and
second-derivative continuity. The three curves are very similar,
but the M = 3 slope discontinuity shown here is the worst I
managed to generate among a number of attempts for various
atoms tested. It takes the magnification of the inset to easily
discern the continuity differences. It is apparent that the present
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FIG. 3. (Color online) Illustration of the pseudopotential conti-
nuity results from requiring M = 3, 4, or 5 value plus derivative
continuity constraints on the pseudo-wave-function, for the weakly-
bound unoccupied Ca d state. rc = 2.5 aB is indicated by the vertical
bar.
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optimization procedure tends to suppress discontinuities even
when they are not strictly eliminated.

III. OPTIMIZING VANDERBILT PROJECTORS

We will briefly review Vanderbilt’s derivation,6 pausing and
introducing an appropriate simplification at the point where
the norm-conserving and ultrasoft versions diverge. Several
reference all-electron wave functions ψi and corresponding
pseudo-wave-functions ϕi at energies εi will be considered,
all at a given � as usual. Let these actually be r times the radial
wave functions so that the kinetic energy operator simplifies
to T = [−d2

/
dr2 + �(� + 1)

/
r2]/2 in atomic units. Let us

choose a local potential Vloc which joins smoothly to VAE at
some r � rc but is otherwise arbitrary. Following Ref. 6, we
introduce the projectors

|χi〉 = (εi − T − Vloc) |ϕi〉 . (18)

Note that χi are zero for r � rc.
For a single projector χ1, the nonlocal potential operator is

VNL = |χ1〉 〈χ1|
〈ϕ1 | χ1〉 , (19)

which is the usual KB result,10 although obtained without any
reference to the semilocal potential. Vanderbilt generalized this
to the case of more projectors, and we will revise his Eq. (7)
for our purposes23 to

VNL =
∑
i,j

|χi〉 (B−1)ij 〈χj |, (20)

where

Bij = 〈ϕi |χj 〉. (21)

Now in general, Bij �= Bji , so VNL would be a non-Hermitian
operator. However, after performing integration by parts on
the integrals giving Bij ,

Bij =
∫ rc

0
ϕi

[
εj + 1

2

d2

dr2
− �(� + 1)

2r2
− Vloc

]
ϕj , (22)

and subtracting corresponding expressions for the all-electron
ψi with VAE, he proved that Bij will be a symmetric matrix if
the generalized norm-conservation condition

〈ϕi |ϕj 〉rc
= 〈ψi |ψj 〉rc

(23)

is satisfied, where the rc subscripts indicate that the overlap is
to be computed on [0,rc].

Vanderbilt went on to show that for the ultrasoft case, i.e.,
allowing Eq. (23) to be violated and compensating appropri-
ately, the energy derivatives of the logarithmic derivatives of
pseudo-wave-functions calculated from Vloc + VNL will match
those of corresponding all-electron functions at each εi .6 This
also applies to the generalized norm-conserving case, where
Eq. (23) is satisfied, extending this property of the original
semilocal pseudopotentials3 to several energies.

For purposes of ease of integration with plane-wave codes,
we have transformed Eq. (20) one step further, normalizing the
χi , rescaling Bij appropriately, diagonalizing it, and forming
linear combinations of the χi using the resulting eigenvectors.

Our final form for the nonlocal operator is

VNL =
∑

i

|χ̃i〉 1

b̃i

〈χ̃i | , (24)

where b̃i are the eigenvalues of the rescaled Bij .
In general we prefer to use the scalar-relativistic radial

Schrödinger equation24 for our all-electron calculations, since
by including the mass-velocity, Darwin, and other higher-order
terms it gives a better description of heavier atoms. Since
the kinetic energy is no longer the simple second derivative,
the integration-by-parts subtractions of Eq. (22) and its all-
electron analogue no longer cancel, so the exact symmetry of
Bij is not ensured. In practice, we find that the asymmetry
is ∼ 10−4 to 10−5 for both light and heavy atoms, so we
simply symmetrize Bij and proceed. This manifests itself in
disagreements of comparable magnitude in comparisons of
quantities such as eigenvalues and norms computed with the
final OV potentials, which are typically correct to ∼ 10−8

when nonrelativistic all-electron calculations are employed.
While they have not yet been implemented, we expect similar
behavior for fully relativistic calculations employing the Dirac
equation.

Incorporating the norm-conserving Vanderbilt construction
into the residual energy optimization framework,14 we will
restrict our attention to two projectors. The reference ψ1 and
ψ2 for a given � might be chosen to be a shallow core and
a valence wave function, a valence and a barrier function, or
two barrier functions. Typically, we find a spread of ∼1 Ha
between ε1 and ε2 works well when the choice is not dictated
by the use of two bound functions. It is appropriate for ψ2

to have one more node than ψ1 inside rc. The procedures of
Sec. II are followed to construct a nodeless norm-conserving
ϕ1.

The key observation in proceeding to the calculation of
ϕ2 is that while the diagonal terms in Eq. (23) are quadratic
constraints, the off-diagonal term is a linear constraint. Since
ψ2 will in general have a different logarithmic derivative at
rc than ψ1, we could go all the way back to the beginning of
our basis set construction. However, the orthonormal ξO

i basis
calculated for ϕ1 has proven to be perfectly adequate for ϕ2.
The off-diagonal norm constraint can now imposed simply by
adding a row to the constraint matrix Cij in Eq. (7) and an
element to the “derivatives” vector,

CM+1,i = zi ; dM+1 = 〈ψ1 | ψ2〉rc
(25)

where zi is the set of N ξO
i coefficients in Eq. (5). They are

formed as the sum of the z0i coefficients in Eq. (10) and the
are the corresponding ξO

i coefficients transformed back from
the optimized xi in Eq. (13) using the Er

ij eigenvectors and the
null singular vectors of the original Cij . The optimization of
ϕ2 now proceeds as in Sec. II from Eq. (7) onward, with the
quadratic 2,2 normalization constraint of Eq. (23) treated as in
Eq. (12).

The new null basis set ξN
i for ϕ2 now has one fewer

member than that for ϕ1, so in principal, Er cannot be as
well optimized. In practice, ϕ2 is either a pseudo-valence-state,
which despite its single node is intrinsically “softer” in q space
than the corresponding shallow core ϕ1, or is a scattering state
sufficiently higher in energy that it does not enter into the
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FIG. 4. (Color online) Convergence of the total energy with
plane-wave cutoff for Si and Cu solids, showing the minor effect of
the second projector of the OV method compared to KB. The points
are residual energies from the first-projector atomic calculations.

occupied states in the solid with appreciable amplitude. An
example typical of each case is shown in Fig. 4, where the
convergence of the total energies of Si and Cu are plotted as
functions of plane-wave cutoff energy comparing KB and OV
calculations. The “soft” Si potential includes valence states
only, while the “hard” Cu potential treats 3s and 3p cores
as valence. KB-OV convergence differences are basically
negligible in the relevant range of cutoffs. These plots are
representative of the convergence behavior of all the potentials
used in the Sec. IV tests. This figure also confirms the manner
in which Er(q) correlates with the actual plane-wave behavior,
where we have plotted it for the least-rapidly converging � for
each material. (We note in passing that the pseudo Cu 3s and
3p states converge more rapidly than the 3d, so there is no
significant computational penalty in treating them as valence.)

The improvement in reproducing all-electron (AE) scatter-
ing results with KB and OV pseudopotentials is illustrated in
Fig. 5 for K. The 3s and 3p shallow core states are treated
as valence, and the local potential is a smooth polynomial
extrapolation of the AE potential from the minimum rc to
zero. The arc tangents of the logarithmic derivatives at rc,
which are somewhat analogous to scattering phase shifts are
plotted. These are much easier to compare visually than the
logarithmic derivative themselves. The AE and OV results are
identical within the linewidths, while the KB results deviate
significantly for the s and d channels. This is consistent with
the one example in Ref. 19, and representative of all the OV
pseudopotentials used in the tests in the next section. While
the logarithmic derivative error appears to be quite small at
the − 0.089 Ha eigenvalue of the K 4s state, the differences
between the OV and KB pseudo-wave-functions shown in
Fig. 6 are substantial, and the KB binding energy is 0.0083
Ha smaller (9%). The OV wave function reproduces the AE
results perfectly outside rc by construction.

A problem that must be addressed with any Hamiltonian
containing a separable nonlocal operator like Eq. (24) is the
fact that its eigenstates are not necessarily ordered in energy
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FIG. 5. (Color online) K logarithmic derivatives vs energy plotted
as atan[rc(dψ/dr)/ψ]/π at rc. All-electron, OV, and KB are
compared. Curves are offset for clarity.

by numbers of nodes. So-called “ghost states” at energies
below the nodeless pseudo-wave-function from which the
pseudopotential was generated can invalidate results.18 An
analysis of the KB case gives a straightforward prescription
to test for this possibility.25 This does not generalize to the
multiprojector case, but we can test a potential by scanning the
logarithmic derivative it produces outside rc over a sufficiently
wide range of energies below the lowest desired eigenvalue. A
spurious step in a plot such as Fig. 5 signals the occurrence of
a ghost. In practice, the second projector of the OV method is
very effective at suppressing ghosts compared to KB. In either
case, adjustment of the local potential will fix the problem.
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IV. RESULTS FOR SOLIDS

The appropriate tests are to compare all-electron-density-
functional calculations for solids with pseudopotential cal-
culations. For our reference calculations, we used the open-
source ELK code, which employs the full potential linear aug-
mented plane-wave plus local-orbital method.26 The default
parameters appear to yield well-converged results, and are
employed for all the calculations except for a few cases in
which muffin-tin radii had to be decreased to accommodate
short bond lengths. The calculations used here are effec-
tively scalar-relativistic, based on weighted averages of Dirac
equation solutions within the muffin tins. The local-density
approximation was used.27 Since ELK is not able to optimize
lattice parameters directly, we chose cubic materials for all
but one case, so that energy versus volume curves fitted with
the Burch-Murnaghan equation of state28 could easily yield
the lattice constant a and the bulk modulus B0. While this
equation of state was used throughout for consistency among
the quoted results, five other functional forms available within
ELK26 were tested for several cases. The spreads damong
the results were ±0.001 aB for a and ±1 − 2% for B0, with
Burch-Murnaghan typically falling near the center of the
distribution.

Plane-wave calculations were carried out using the ABINIT

code.29,30 Full structural optimization was carried out via
force and stress minimization, and the bulk modulus was
determined from elastic constants calculated using DFPT.21

Well-converged Brillouin-zone samples, Fermi smoothing
of band occupations for metals, etc. were kept consistent
between the AE and pseudopotential calculations. Plane-wave
convergence was tested, and the lattice constants presented in
Table I are all converged to ∼0.1% and the bulk moduli to
∼1% or better at the stated cutoff energies.

The test cases were chosen to represent a variety of types
of bonding and to involve atoms which give a representative,

if coarse, sampling of the periodic table. Most atoms were
used in two and sometimes three solids, always represented by
the same pseudopotentials. All the cases we tested have been
included, whether or not there was significant improvement
in agreement using OV potentials. All pseudopotentials were
based on the atomic ground-state configuration. All parameters
for each element were identical for the KB and OV potentials.
The RRKJ optimization was carried out as in Sec. II, and the
KB potentials defined by Eq. (19). Projectors for s, p, and d

were included for all but first-row atoms, with f projectors
for two atoms. Vloc was a smooth polynomial extrapolation of
VAE in all cases. Semicore electrons mentioned explicitly were
treated as valence in the calculations. The pseudopotentials are
documented in the Supplemental Materials,31 and they and the
test solids are discussed in tabular order below.

The K calculations included 3s, 3p, and 4s. Two K
potentials were used. The initial KB results for bcc K metal
showed sufficient errors that the K∗ potential was tried using
smaller rcs, which are generally found to improve results
(if at the expense of convergence). The OV results are in
excellent agreement with AE, and identical for both sets of
parameters, while the KB results bracket AE, with somewhat
better agreement for K∗. Moving to the ionic insulator KCl,
where Cl included only the outer 3s and 3p, the OV results are
once again in excellent agreement with AE and identical for K
and K∗. The KB results for both K and K∗ are in qualitatively
worse agreement than for K metal, with no apparent correlation
between the lattice-constant and bulk-modulus errors.

To test a different structure and give K∗ another chance,
we chose KBaN, a half-Heusler-structure insulator, not yet
known experimentally but recently proposed as a promising
piezoelectric.32 N 2s and 2p and Ba 4d and 6s electrons are
included. AE and OV results are in excellent agreement, while
KB show substantial errors. Ba as an elemental bcc metal
provides another test for its potentials. For OV, a is in excellent

TABLE I. Comparisons of lattice constants and bulk moduli among all-electron, optimized Vanderbilt, and Kleinman-Bylander calculations
for the test set of solids. K∗ and Si∗ are explained in the text.

Lattice constants (aB) Bulk moduli (GPa)

System Ecut (Ha) AE OV KB AE OV KB

K 20 9.58 9.58 10.56 4.14 4.13 3.00
K∗ 20 9.58 9.58 9.33 4.14 4.13 3.83
KCl 20 11.49 11.48 14.64 23.90 24.33 8.69
K∗Cl 20 11.49 11.48 11.14 23.90 24.36 31.53
K∗BaN 25 12.23 12.25 12.70 44.01 44.22 34.35
Ba 20 9.11 9.09 9.57 9.22 9.47 10.01
ZrN 25 8.55 8.57 9.49 280.98 280.50 154.48
LaN 30 9.84 9.83 8.24 134.84 134.67 222.44
Si 10 10.21 10.21 10.20 97.11 95.80 95.30
SiO2 30 13.90 14.07 14.09 152.68 152.69 152.88
Si∗O2 30 13.90 13.92 NAa 152.68 155.32 NAa

CaSi2 20 7.14 7.14 6.94 68.42 67.05 88.11
CaSi2 c 29.30 29.19 26.71
SrTiO3 30 7.27 7.31 6.95 198.85 201.51 269.03
SrO 30 9.56 9.58 8.79 105.73 104.40 194.04
BiSe 20 11.38 11.40 11.40 66.03 65.81 66.45
Cu 30 6.57 6.58 7.27 172.47 174.17 106.95

aNA (Not Available), see an explanation in the text.
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agreement and B0 off by + 3%, while corresponding errors for
KB are + 5% and + 9%.

Providing another test for N and introducing a 4d transition
metal, we chose the metallic rock-salt compound ZrN. Zr
4s, 4p, 4d, and 5s electrons were included. In general, we
found that transition-metal d electrons limited convergence,
and that including semicores in the same shell added little
computational effort. We found excellent agreement for OV,
and substantial errors for KB.

La has a bound but unoccupied 4f state which should
influence its bonding in a solid, so we added rock-salt LaN as
a test. La 5s, 5p, 5d, and 6s electrons were included. Although
anticipated to be an insulator, it was semimetallic within the
local-density approximation. The Er analysis of the optimized
4f pseudo-wave-function suggested a 30 Ha cutoff, which
was apparently necessary. OV results were excellent, but once
again KB showed substantial errors.

Moving to the center of the periodic table, Si showed
excellent results for both OV and KB at a modest cutoff,
providing another example of an old adage of the electronic-
structure community: “Anything works for Si.” Only Si 3s

and 3p electrons were included, along with a nonlinear-core-
correction charge33 in polynomial form.34 To provide more
of a challenge, we studied SiO2 in an artificial cubic Fd3̄m

structure once mistakenly thought to be that of β crystobalite.
It is best described as an expanded diamond lattice of Si with
O inserted midway between each Si neighbor pair, i.e., with
1800 Si-O-Si bond angles. Optimizing this structure gives the
essentially standard Si-O bond length of 1.6 Å, and so this
hypothetical material should be reasonably representative of
real SiO2 bonding. In this case, too, both OV and KB are in
good agreement with AE. To push this case one step further,
we took advantage of the O-required cutoff and introduced
the Si∗ pseudopotential, with the rather deep 2s and 2p core
states treated as valence. The optimization procedure was
very effective, and the OV results remained extremely well
converged at 30 Ha (4 × 10−5 aB and 0.1 GPa compared to 40
Ha). Unfortunately, Si∗ with KB did not even bind the solid,
the energy being a monotonically decreasing function of a for
11 � a � 20 aB. The corresponding Table I entries are labeled
“Not Available” (NA).

A third Si-based material, the metallic compound CaSi2,
was included because it has the unusual property of showing
significant occupation of a Ca 3d state, which is weakly
bound and unoccupied in the atom.35 Including the 3s, 3p,
and 4s electrons for Ca, it is the 3d that controls convergence
in the solid, and makes this system an interesting test for
both convergence optimization and the effect of the second
projector. Among several polymorphs, we used the trigonal
rhombohedral “tr3” structure,36 space group R3̄m , with one
formula unit per primitive cell. Qualitatively, buckled Si double
layers similar to (111) double layers in the Si diamond structure
are separated by intercalated Ca atoms. Structural relaxation
using ELK was accomplished using a mesh of ∼30 a and
c lattice constants, relaxing the single internal coordinate,
and fitting the resulting energies with a cubic polynomial
in a and c. The B0 calculation using DFPT within ABINIT

was supplemented by a relaxation correction using DFPT
internal strain and interatomic force constants.21 For this
system, the OV results are in excellent agreement with AE,

but the KB results show substantial errors, with the differences
presumably arising mainly from the Ca. (A second CaSi2 row
has been added to Table I for the c lattice constant.)

The cubic perovskite structure of SrTiO3 was chosen to
have more typical 3d hybridization in an insulator. Sr 4s, 4p,
and 5s were included, with 3s, 3p, 3d, and 4s for Ti. Once
again, the Sr and Ti semicores did not limit convergence. The
OV results are in excellent agreement with AE. KB shows a
moderate − 4% error for a, and a significantly larger error for
B0. Dropping the Ti, rock-salt SrO shows comparable levels
of agreement and disagreement for OV and KB.

The rock-salt metal BiSe was included to have a scattering-
state f projector above the filled Bi 4f core level, with 5d,
6s, and 6p included as valence. Se included only 4s and 4p.
For this compound, both OV and KB gave excellent agreement
with AE.

Elemental fcc Cu was included primarily for historical
reasons, its 3d potential being the first published optimized
pseudopotential.14 The rather prominent slope discontinuity
seen at rc in Fig. 2 of Ref. 14 initially motivated part of the
present work. With the optimization approach described in
Sec. II, however, the unconstrained slope discontinuity for Cu
3d was even less apparent that that shown in our Fig. 3 for
Ca. The results for the solid, with 3s, 3p, 3d, and 4s show
excellent AE-OV agreement, with substantial errors for KB.
The 3d sets the convergence behavior, shown in Fig. 4.

V. DISCUSSION AND CONCLUSIONS

The main conclusion of the work described above is
that the neglected Vanderbilt approach to norm-conserving
multiprojector pseudopotentials6 can be used in the context
of systematic convergence optimization,14 and can serve as
a competitive choice for accuracy and computational effi-
ciency compared to ultrasoft6 and projector-augmented-wave
potentials.7 Some trends are discernable among the results for
the 12 solids studied as test cases. The outermost core electrons
were treated as valence for many of the atoms in these tests.
This is widely known to be particularly important to obtain
accurate results for group 1 and group 2 elements, and can
also be important for transition-metal elements. The greatest
differences between OV and KB results also occurred in cases
with these cores. With optimization, the plane-wave cutoff
requirements with core states remained relatively modest.

The second observation to be drawn is that the use of
the ground-state configurations of the atoms to generate the
OV potentials gives comparably good results in elemental,
covalent, and ionic solids. In fact, the test systems involving
Si included strictly covalent diamond Si, cationic Si in
SiO2, and at least in electronegativity terms, anionic Si
in CaSi2.

A third comment is that the KB results for any given system
can undoubtedly be improved. While in the course of this
research some parameters were changed to eliminate ghost
states or improve very bad KB results, the OV results and their
agreement with AE were essentially unchanged. The KB errors
in Table I are consistently worse for cases in which shallow
cores are treated as valence. This is presumably due to errors
in correctly representing the actual valence state when the KB
projector is based on a shallow core, as discussed near the end
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of Sec. III with reference to the K results shown in Figs. 5 and
6. Better results with RRKY-optimized KB potentials could
undoubtedly be obtained in at least some of these cases by
pseudizing the valence states only, including nonlinear core
corrections, and adjusting rcs and the local potential by trial
and error to optimize the range over which KB reproduced
all-electron logarithmic derivatives.

Another potentially relevant type of test is to compare all-
electron and pseudopotential total-energy differences between
the reference atomic configuration and other configurations.
We carried out such tests for one- and two-electron ionized
states since the neutral ground state was the reference. For
the atoms used in the test on solids, the rms excitation error
was 0.012 Ha for KB versus 0.003 Ha for OV. However, atom
by atom, the correlation between these results and results for
solids was at best difficult to discern, and this does not seem a
promising approach to improve KB potentials.

A final point to be made is that in no case among the 14
atoms in the tests were the parameters used in constructing
the OV potentials adjusted to “improve” agreement with the
AE results. The agreement was nearly always within the range
of the spread of the equation-of-state fits, and usually better.
Some experimentation with the optimization parameters qc

and N as well as the projector energies ε1 and ε2(where not
fixed by bound states) was done to improve convergence and

balance it among the �s, but this was all evaluated within
the confines of the pseudopotential generation code, with no
reference to results for solids. With the exception of the “Si∗
experiment,” decisions on treating core states as valence were
made in advance of any AE comparisons.

While all the calculations reported here were done using
the local-density approximation,27 ELK AE results and OV
pseudopotential results were also compared using the PBE
generalized-gradient functional37 for several of the test sys-
tems. Agreement was comparable. However, when a pseu-
dopotential generated with PBE was (unintentionally) used to
compare local-density AE and OV calculations, differences
increased noticeably.

The overall conclusion of this research is that the accuracy
of two-projector OV pseudopotentials in calculating the
properties of materials is primarily limited by the accuracy
of the underlying density-functional approximations. The
open-source ONCVPSP code, which implements the algorithms
developed here and was used for all the reported results is
freely available.38
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